精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 等腰直角三角形ABC,角C=90度,p是三角形內一點,PB=1,PC=2,PA=3,求角BPC?

    等腰直角三角形ABC,角C=90度,p是三角形內一點,PB=1,PC=2,PA=3,求角BPC?
    數學人氣:111 ℃時間:2019-08-19 13:42:00
    優(yōu)質解答
    將△BPC繞點C逆時針旋轉90°,得△AP'C,
    (BC=AC ,旋轉后BC與AC重合,點B恰好與點A重合)
    ∵△BPC≌△AP'C
    ∴∠BCP=∠ACP',∠BPC=∠AP'C,(全等三角形對應角相等)
    AP'=BP=1,CP'=CP=2(全等三角形的對應邊相等)
    ∵∠BCP+∠ACP=90°,∠BCP=∠ACP'
    ∴∠ACP'+∠ACP=90°,即∠PCP'=90°
    ∵∠PCP'=90°,CP'=CP=2
    ∴PP'=2×根號2(根據勾股定理求值)
    ∵在△PAP'中,AP'=1,PA=3,PP'=2×根號2
    ∴AP'的平方+PP'的平方=PA的平方
    ∴∠PP'A=90°(直角三角形勾股定理逆定理)
    ∴∠AP'C=45°+90°=135°
    ∴∠BPC=135°
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版