The answer is 1830.
Let a=f(1).By induction,one may easily prove that for any n>=0,
f(4n+1)=a,
f(4n+2)=8n+1+a,
f(4n+3)=2-a,
f(4n+4)=8n+7-a.
Therefore,
f(1)+f(2)+...+f(60)
=\sum_{n=0}^{14}(f(4n+1)+f(4n+2)+f(4n+3)+f(4n+4))
=\sum_{n=0}^{14}(16n+10)
=16*14*15/2+150
=1830.??????????????????????а???
高中數(shù)學,已知數(shù)列{f(n)}滿足f(n+1)+f(n)×(-1)^n=2n-1,求此數(shù)列前60項和.
高中數(shù)學,已知數(shù)列{f(n)}滿足f(n+1)+f(n)×(-1)^n=2n-1,求此數(shù)列前60項和.
數(shù)學人氣:794 ℃時間:2020-06-24 16:23:54
優(yōu)質(zhì)解答
我來回答
類似推薦
- 數(shù)列題,a(n+1)加a(n)與-1的n次冪的乘積等于2n-1,求前60項和
- 記Cn=1/(n∧2+2n),求數(shù)列Cn的前n項和Tn.
- 高中數(shù)學關(guān)于數(shù)列的一步計算怎么得到的?3*(2+2^1+2^2+2^3+.2^n)+2n
- 高中數(shù)學必修五: 已知函數(shù)f(x)=(1-2x)/(x+1) (x>=1),構(gòu)造數(shù)列An=f(n) (n∈N+) (1) 求證:An>-2
- 高中數(shù)學問題(關(guān)于數(shù)列的)bn=-n*2n(二的n次方)求Sn=?
- 函數(shù)f(x)=sinx-cosx^2的最小值是?
- 英語翻譯
- I took my grandpa to the hospital this morning,_____ I missed the first class.
- So crazy
- 方差是各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù)
- 函數(shù)y=f(x)與它反函數(shù)y=f^-1(x)怎么讀?
- These are photos of my families.Look at them 改錯
猜你喜歡
- 1平面與平面重合,是否屬于平行一類?那重合的兩直線,也屬于平行一類的嗎?
- 2非洲每年因饑餓死亡的人數(shù)及現(xiàn)在饑餓人口數(shù)量拜托各位了 3Q
- 3decide to do sth.還=什么
- 4(7/8)o you think of london?B:5.____london is one of the liveliest cities
- 5啤酒可以托運嗎
- 6邊長為2√6的等邊三角形的中心到一邊的距離為?
- 7please give your hand to help me
- 8已知2的X次方等于3的Y次方等于6的Z次方不等等于1,證明X分之一加Y分之一等于Z分之一.
- 9幫我做做?
- 10機械分析天平TG628A的使用說明書
- 11in winter ,we wear warm coats to protect our bodies_.
- 12( )was most importance to her ,she told me,was her family it this what as