1、依題意:AF=AD=AB,則Rt△AFG≌Rt△ABG(HL),有∠AGB=∠AGF
FG=BG=CG,進而∠GCF=∠GFC
那么∠GCF+∠GFC+∠FGC=180°=2∠GCF+∠FGC
且∠AGB+∠AGF+∠FGC=180°=2∠AGB+∠FGC
因此∠GCF=∠AGB,故AG∥CF
2、設DE=EF=x,CG=FG=y
則EG=x+y,CE=2y-x,在Rt△ECG中由勾股定理得出:
y^2+(2y-x)^2=(x+y)^2,化簡后得出x=2y/3=DE
那么CE=2y-x=4y/3,故DE/CE=1/2