精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 數列an中,已知a1=1/2,且前n項和Sn=n^2an,則an=

    數列an中,已知a1=1/2,且前n項和Sn=n^2an,則an=
    數學人氣:538 ℃時間:2020-05-09 22:41:29
    優(yōu)質解答

    (1)
    S2 = 2^2 * a2 = a1 + a2 = 1/2 + a2
    a2 = 1/6
    S3 = 3^2 * a3 = a1 + a2 + a3 = 1/2 + 1/6 + a3
    a3 = 1/12
    S4 = 4^2 * a4 = a1 + a2 + a3 + a4 = 1/2 + 1/6 + 1/12 + a4
    a4 = 1/20
    (2)
    猜測{an}的通項公式是an = 1/[n(n+1)]
    證:
    當n = 2時,有
    S2 = 2^2 * a2 = a1 + a2 = 1/2 + a2
    a2 = 1/6 = 1/[2*(2+1)]
    假設當n = N時,有aN = 1/[N(N+1)],SN = N^2 * aN = N/(N+1),則
    當n = N+1時,有
    SN+1 = (N+1)^2 * aN+1 = a1 + a2 + …… + aN + aN+1 = N/(N+1) + aN+1
    aN+1 = [N/(N+1)]/[(N+1)^2 - 1] = 1/[(N+1)(N+2)]
    所以
    當n = N+1,公式成立
    所以,對任意N,都有aN+1 = 1/[(N+1)(N+2)],該命題成立.
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版