精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 數(shù)列an的前n項和為Sn,Sn+an=-1/2n2-3/2n+1(n屬于正自然數(shù)).設(shè)bn=an+n,證明數(shù)列bn是等比數(shù)列

    數(shù)列an的前n項和為Sn,Sn+an=-1/2n2-3/2n+1(n屬于正自然數(shù)).設(shè)bn=an+n,證明數(shù)列bn是等比數(shù)列
    求數(shù)列{nbn}的前n項和Tn
    數(shù)學人氣:236 ℃時間:2019-08-26 08:03:38
    優(yōu)質(zhì)解答
    Sn+an=-(1/2)n^2-(3/2)n+1
    n=1
    a1=-1/2
    2Sn-S(n-1) = -(1/2)n^2-(3/2)n+1
    2(Sn + (1/2)n^2 +(1/2)n -1) = S(n-1) +(1/2)(n-1)^2+(1/2)(n-1) -1
    [(Sn + (1/2)n^2 +(1/2)n -1)]/[S(n-1) +(1/2)(n-1)^2+(1/2)(n-1) -1]=1/2
    [(Sn + (1/2)n^2 +(1/2)n -1)]/[S1 +(1/2)+(1/2) -1]=(1/2)^(n-1)
    Sn + (1/2)n^2 +(1/2)n -1 = -(1/2)^n
    Sn=1-n/2 -n^2/2 - (1/2)^n
    an = Sn -S(n-1)
    = -n +(1/2)^n
    an +n = (1/2)^n
    bn =an+n 是等比數(shù)列
    nbn = n(1/2)^n
    Tn =1b1+2b2+...+nbn
    consider
    1+x+x^2+..+x^n = (x^(n+1)- 1)/(x-1)
    1+2x+..+nx^(n-1) =[(x^(n+1)- 1)/(x-1)]'
    = [nx^(n+1) - (n+1)x^n + 1]/(x-1)^2
    put x=1/2
    summation(i:1->n) i.(1/2)^(i-1)
    = 4(n.(1/2)^(n+1) - (n+1).(1/2)^n + 1)
    = 4[1- (n+2).(1/2)^(n+1)]
    Tn =1b1+2b2+...+nbn
    = (1/2)(summation(i:1->n) i.(1/2)^(i-1))
    =2[1- (n+2).(1/2)^(n+1)]
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版