則x1+x2=x+a,y1+y2=y+b,
PA |
PB |
由PA⊥PB,得
PA |
PB |
整理得:x1x2+y1y2-a(x1+x2)-b(y1+y2)+a2+b2=0,
即x1x2+y1y2=ax+by ①
又∵點(diǎn)A、B在圓上,∴x12+y12=x22+y22=r2,②
再由|AB|=|PQ|,得(x1-y1)2+(x2-y2)2=(x-a)2+(y-b)2,
整理得:x12+y12+x22+y22-2(x1x2+y1y2)=(x-a)2+(y-b)2,③
把①②代入③得:x2+y2=2r2-a2-b2+2r2.
∴矩形APBQ的頂點(diǎn)Q的軌跡方程為:x2+y2=2r2-a2-b2.