∵a5?a2n-5=22n=an2,an>0,
∴an=2n,
∴l(xiāng)og2a1+log2a3+…+log2a2n-1=log2(a1a3…a2n-1)=log221+3+…+(2n-1)=log22n2=n2.
故選B.
已知等比數(shù)列{an}滿足an>0,n=1,2,…,且a5?a2n-5=22n(n≥3),則當(dāng)n≥1時,log2a1+log2a3+…+log2a2n-1=( ) A.(n-1)2 B.n2 C.(n+1)2 D.n2-1
已知等比數(shù)列{an}滿足an>0,n=1,2,…,且a5?a2n-5=22n(n≥3),則當(dāng)n≥1時,log2a1+log2a3+…+log2a2n-1=( ?。?br/>A. (n-1)2
B. n2
C. (n+1)2
D. n2-1
B. n2
C. (n+1)2
D. n2-1
數(shù)學(xué)人氣:335 ℃時間:2020-01-27 02:01:29
優(yōu)質(zhì)解答
我來回答
類似推薦
- 已知等比數(shù)列{an}滿足an>0,n=1,2,…,且a5?a2n-5=22n(n≥3),則當(dāng)n≥1時,log2a1+log2a3+…+log2a2n-1=( ?。?A.(n-1)2 B.n2 C.(n+1)2 D.n2-1
- 已知等比數(shù)列{An}滿足An>0,n=1,2,…,且A5·A(2n-5)=2^(2n)(n≥3),則n≥1時,log2(A1)+log2(A3)+……+log2[A(2n-1)]=?
- 已知等比數(shù)列{an}滿足an>0,n=1,2,…,且a5?a2n-5=22n(n≥3),則當(dāng)n≥1時,log2a1+log2a3+…+log2a2n-1=( ?。?A.(n-1)2 B.n2 C.(n+1)2 D.n2-1
- 已知等比數(shù)列{an}滿足an>0,且a5*a2n-5=2^2n(n>=3且n屬于N*),則當(dāng)n>=1時,log2(a1)+log2(a3)+……+log2(a2n-1)=?
- 已知等比數(shù)列{an}中滿足an大于0,n為正整數(shù)且a5*a2n-5=2的2n次方則n大于等于1時,loga1+loga2+...+loga2n-1
- 函數(shù)f(x)=sinx-cosx^2的最小值是?
- 英語翻譯
- I took my grandpa to the hospital this morning,_____ I missed the first class.
- So crazy
- 方差是各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù)
- 函數(shù)y=f(x)與它反函數(shù)y=f^-1(x)怎么讀?
- These are photos of my families.Look at them 改錯
猜你喜歡
- 1平面與平面重合,是否屬于平行一類?那重合的兩直線,也屬于平行一類的嗎?
- 2非洲每年因饑餓死亡的人數(shù)及現(xiàn)在饑餓人口數(shù)量拜托各位了 3Q
- 3decide to do sth.還=什么
- 4(7/8)o you think of london?B:5.____london is one of the liveliest cities
- 5啤酒可以托運(yùn)嗎
- 6邊長為2√6的等邊三角形的中心到一邊的距離為?
- 7please give your hand to help me
- 8已知2的X次方等于3的Y次方等于6的Z次方不等等于1,證明X分之一加Y分之一等于Z分之一.
- 9幫我做做?
- 10機(jī)械分析天平TG628A的使用說明書
- 11in winter ,we wear warm coats to protect our bodies_.
- 12( )was most importance to her ,she told me,was her family it this what as