令g(x)=x2-ax+3,函數(shù)的對稱軸方程為x=
a |
2 |
函數(shù)g(x)=x2-ax+3在(-∞,
a |
2 |
a |
2 |
要使復(fù)合函數(shù)f(x)=loga(x2-ax+3)在區(qū)間(-∞,
a |
2 |
則外層函數(shù)y=logag(x)為增函數(shù),且同時滿足內(nèi)層函數(shù)g(x)=x2-ax+3在(-∞,
a |
2 |
即
|
解得:1<a≤2
3 |
∴使函數(shù)f(x)=loga(x2-ax+3)在區(qū)間(-∞,
a |
2 |
3 |
故選:C.