![](http://hiphotos.baidu.com/zhidao/pic/item/78310a55b319ebc4e6e6eb288126cffc1f1716e0.jpg)
∴DA平分∠BAC,即∠DAB=∠DAC=30°;
∵△DAE是等邊三角形,
∴∠DAE=60°;
∴∠CAE=∠DAE-∠CAD=30°;
(2)證明:∵△BAC是等邊三角形,F(xiàn)是AB中點,
∴CF⊥AB;
∴∠BFC=90°
由(1)知:∠CAE=30°,∠BAC=60°;
∴∠FAE=90°;
∴AE∥CF;
∵△BAC是等邊三角形,且AD、CF分別是BC、AB邊的中線,
∴AD=CF;
又AD=AE,∴CF=AE;
∴四邊形AFCE是平行四邊形;
∵∠AFC=∠FAE=90°,
∴四邊形AFCE是矩形.