![](http://hiphotos.baidu.com/zhidao/pic/item/ac4bd11373f0820299be8dbd48fbfbedab641b07.jpg)
∴對(duì)稱軸直線l=
-1+3 |
2 |
∵對(duì)稱軸l與x軸相交于點(diǎn)C,
∴AC=2,
∵∠ACD=90°,tan∠ADC=
1 |
2 |
∴CD=4,
∵a>0,
∴D(1,-4);
(2)設(shè)y=a(x-h)2+k,有(1)可知h=1,k=-4,
∴y=a(x-1)2-4,
將x=-1,y=0代入上式,
得:a=1,
![](http://hiphotos.baidu.com/zhidao/pic/item/c995d143ad4bd113b2deabb059afa40f4bfb0524.jpg)
所以,這條拋物線的表達(dá)為y=x2-2x-3;
(3)過點(diǎn)F作FH⊥x軸,垂足為點(diǎn)H,
設(shè)F(x,x2-2x-3),
∵∠FAC=∠ADC,
∴tan∠FAC=tan∠ADC,
∵tan∠ADC=
1 |
2 |
∴tan∠FAC=
FH |
AH |
1 |
2 |
∵FH=x2-2x-3,AH=x+1,
∴
x2-2x-3 |
x+1 |
1 |
2 |
解得x1=
7 |
2 |
∴F(
7 |
2 |
9 |
4 |