求證明極限lim(x,y)->(0,0) (x^2 * sin^2y)/x^2 +9y^2 =0
求證明極限lim(x,y)->(0,0) (x^2 * sin^2y)/x^2 +9y^2 =0
如題,求證明該極限=0
優(yōu)質(zhì)解答
x^2/(x^2+9y^2)0
所以由夾逼法則,
lim(x,y)->(0,0) (x^2 * sin^2y)/(x^2 +9y^2) =0能介紹下夾逼法則嗎?我才剛學(xué)求2變量極限,我只知道一個(gè)方法證明極限存在:如果有0<根號(hào)下(x-a)^2 +(y-b)^2 (a,b) f(x,y)= L就成立。這個(gè)方法能證明我的問題嗎?夾逼法:f(x)≤g(x)≤h(x)對(duì)于任意x都成立如果lim x->x0 f(x)=lim x->x0 h(x)那么lim x->x0 g(x)=lim x->x0 f(x)=lim x->x0 h(x)可以,因?yàn)?x^2)/(x^2 +9y^2)≤1所以|(x^2 * sin^2y)/(x^2 +9y^2)-0|≤sin^2 y對(duì)于任意ε>0只需取C=min{π/2,arcsin(min{根號(hào)ε,1})}>0那么只要0<根號(hào)下(x-0)^2 +(y-0)^2 0 遞增, 所以siny