∴f(4)=f(4-5)=f(-1)
∵y=f(x)(-1≤x≤1)是奇函數(shù)
∴f(1)=-f(-1)=-f(4)
∴f(1)+f(4)=0.
②當(dāng)x∈[1,4]時,由題意可設(shè)f(x)=a(x-2)2-5(a>0)
由f(1)+f(4)=0得a(1-2)2-5+a(4-2)2-5=0
∴a=2
∴f(x)=2(x-2)2-5(1≤x≤4)
③∵y=f(x)(-1≤x≤1)是奇函數(shù)
∴f(0)=0
∵y=f(x)在[0,1]上是一次函數(shù)
∴可設(shè)f(x)=kx(0≤x≤1),而f(1)=2(1-2)2-5=-3
∴k=-3
∴當(dāng)0≤x≤1時,f(x)=-3x
從而當(dāng)-1≤x<0時,f(x)=-f(-x)=-3x
故-1≤x≤1時,f(x)=-3x
∴當(dāng)4≤x≤6時,有-1≤x-5≤1
∴f(x)=f(x-5)=-3(x-5)=-3x+15
當(dāng)6<x≤9時,1<x-5≤4,
∴f(x)=f(x-5)=2[(x-5)-2]2-5=2(x-7)2-5
∴f(x)=
|