精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知Rt△ABC中,∠ACB=90°,CA=CB,有一個圓心角為45°,半徑的長等于CA的扇形CEF繞點C旋轉,且直線CE,CF分別與直線AB交于點M,N. (Ⅰ)當扇形CEF繞點C在∠ACB的內部旋轉時,如圖1,求證:MN2=

    已知Rt△ABC中,∠ACB=90°,CA=CB,有一個圓心角為45°,半徑的長等于CA的扇形CEF繞點C旋轉,且直線CE,CF分別與直線AB交于點M,N.

    (Ⅰ)當扇形CEF繞點C在∠ACB的內部旋轉時,如圖1,求證:MN2=AM2+BN2;
    (思路點撥:考慮MN2=AM2+BN2符合勾股定理的形式,需轉化為在直角三角形中解決.可將△ACM沿直線CE對折,得△DCM,連DN,只需證DN=BN,∠MDN=90°就可以了.請你完成證明過程.)
    (Ⅱ)當扇形CEF繞點C旋轉至圖2的位置時,關系式MN2=AM2+BN2是否仍然成立?若成立,請證明;若不成立,請說明理由.
    數學人氣:139 ℃時間:2019-08-26 07:43:35
    優(yōu)質解答
    (Ⅰ)證明:∵將△ACM沿直線CE對折,得△DCM,連DN,∴△DCM≌△ACM(1分)∴CD=CA,DM=AM,∠DCM=∠ACM,∠CDM=∠A又∵CA=CB,∴CD=CB(2分),∴∠DCN=∠ECF-∠DCM=45°-∠DCM∠BCN=∠ACB-∠ECF-∠ACM=90°-45°-...
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版