在平面直角坐標(biāo)系xOy中,拋物線y=2x
2+mx+n經(jīng)過點(diǎn)A(0,-2),B(3,4).
![](http://hiphotos.baidu.com/zhidao/pic/item/503d269759ee3d6de41e327a40166d224e4adea3.jpg)
(1)求拋物線的表達(dá)式及對稱軸;
(2)設(shè)點(diǎn)B關(guān)于原點(diǎn)的對稱點(diǎn)為C,點(diǎn)D是拋物線對稱軸上一動點(diǎn),且點(diǎn)D縱坐標(biāo)為t,記拋物線在A,B之間的部分為圖象G(包含A,B兩點(diǎn)).若直線CD 與圖象G有公共點(diǎn),結(jié)合函數(shù)圖象,求點(diǎn)D縱坐標(biāo)t的取值范圍.
![](http://hiphotos.baidu.com/zhidao/pic/item/54fbb2fb43166d22faafa025452309f79152d2a3.jpg)
(1)∵拋物線y=2x
2+mx+n經(jīng)過點(diǎn)A(0,-2),B(3,4),
代入得:
,
解得:
,
∴拋物線解析式為y=2x
2-4x-2,對稱軸為直線x=1;
(2)由題意得:C(-3,-4),二次函數(shù)y=2x
2-4x-2的最小值為-4,
由函數(shù)圖象得出D縱坐標(biāo)最小值為-4,
設(shè)直線BC解析式為y=kx+b,
將B與C坐標(biāo)代入得:
,
解得:k=
,b=0,
∴直線BC解析式為y=
x,
當(dāng)x=1時,y=
,
則t的范圍為-4≤t≤
.