奇函數(shù)f(x)在[-1,1]上是增函數(shù),且f(-1)=-1,在[-1,1]最大值是1,
∴1≤t2-2at+1,
當(dāng)t=0時顯然成立
當(dāng)t≠0時,則t2-2at≥0成立,又a∈[-1,1]
令g(a)=2at-t2,a∈[-1,1]
當(dāng)t>0時,g(a)是減函數(shù),故令g(1)≥0,解得t≥2
當(dāng)t<0時,g(a)是增函數(shù),故令g(-1)≥0,解得t≤-2
綜上知,t≥2或t≤-2或t=0
故選D.
設(shè)奇函數(shù)f(x)在區(qū)間[-1,1]上是增函數(shù),且f(-1)=-1.當(dāng)x∈[-1,1]時,函數(shù)f(x)≤t2-2at+1,對一切a∈[-1,1]恒成立,則實數(shù)t的取值范圍為( ?。?A.-2≤t≤2 B.t≤-2或t≥2 C.t≤0或t≥2
設(shè)奇函數(shù)f(x)在區(qū)間[-1,1]上是增函數(shù),且f(-1)=-1.當(dāng)x∈[-1,1]時,函數(shù)f(x)≤t2-2at+1,對一切a∈[-1,1]恒成立,則實數(shù)t的取值范圍為( ?。?br/>A. -2≤t≤2
B. t≤-2或t≥2
C. t≤0或t≥2
D. t≤-2或t≥2或t=0
B. t≤-2或t≥2
C. t≤0或t≥2
D. t≤-2或t≥2或t=0
數(shù)學(xué)人氣:722 ℃時間:2020-03-15 14:34:44
優(yōu)質(zhì)解答
我來回答
類似推薦
- f(x)=x-^√1-2x 求出函數(shù)的值域,以及最大最小值.
- 高中數(shù)學(xué)題函數(shù)單調(diào)性求參數(shù)
- 單增+單增=
- 一道高中數(shù)學(xué)關(guān)于函數(shù)的單調(diào)性的題目.
- 若 f(x)=-x2+2ax 與g(x)=ax+1 在區(qū)間[1,2]上都是減函數(shù),則a的取值范圍是( ?。?A.(-1,0)∪(0,1) B.(-1,0)∪(0,1] C.(0,1] D.(0,1)
- 已知實數(shù)x,y滿足2x+3y≤14,2x+y≤9,x≥0,y≥0,S=3x+ay,若S取得最大值時的最優(yōu)解有無窮多個,則實數(shù)a=?
- 請問這種成分還屬301不銹鋼嗎?(C-0.1003;Si-0.2467;Mn-2.2387;p-0.358;S-0.169;Cr-14.6342;Ni-6.0215)
- X=2*3*5*7*11*13*17*19*23*29*.N(N為質(zhì)數(shù)),求證:X+1為質(zhì)數(shù)
- 若√2007n是個非零整數(shù),則最小整數(shù)n是?
- Either I or he ( )soccer with Tom 四個選項 play are plays is
- .the music festival was great!Many famous people (attended) it.
- 如果(M)表示m的全部因數(shù)的和,如(4)=1+2+4=7,則(18)-(21)=()