當(dāng)x∈(0,
1 |
e |
1 |
e |
∴①0<t<t+1<
1 |
e |
②t<
1 |
e |
1 |
e |
1 |
e |
1 |
e |
③
1 |
e |
1 |
e |
綜上得f(x)min=
|
(2)由已知,2xlnx≥-x2+ax-2,則a≤2lnx+x+
2 |
x |
設(shè)h(x)=2lnx+x+
2 |
x |
(x+2)(x?1) |
x2 |
∵x∈[1,e],∴h′(x)≥0,h(x)單調(diào)遞增,
∴存在x0∈[1,e],使得f(x0)≥g(x0)成立,即a≤h(x)max=e+
2 |
e |
1 |
e |
1 |
e |
1 |
e |
1 |
e |
1 |
e |
1 |
e |
1 |
e |
1 |
e |
1 |
e |
|
2 |
x |
2 |
x |
(x+2)(x?1) |
x2 |
2 |
e |