精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 設(shè)數(shù)列an的前n項(xiàng)和為Sn,且S1=2,S<n 1>-Sn=Sn 2=bn求證數(shù)列bn是等比數(shù)列 求數(shù)列an的通項(xiàng)公式

    設(shè)數(shù)列an的前n項(xiàng)和為Sn,且S1=2,S<n 1>-Sn=Sn 2=bn求證數(shù)列bn是等比數(shù)列 求數(shù)列an的通項(xiàng)公式
    S<n+1>-Sn=Sn+2=bn
    數(shù)學(xué)人氣:199 ℃時(shí)間:2020-06-27 16:56:31
    優(yōu)質(zhì)解答
    且S1=2,S<n 1>-Sn=Sn 2=bn 這句話的意思沒看明白!∵bn=Sn + 2∴b(n+1)=S(n+1)+ 2b(n+1)-bn=S(n+1)-Sn=bn∴b(n+1)=2*bn 則b(n+1)/bn=2 又S1=2 ∴b1=4 ∴數(shù)列{bn}是以首項(xiàng)為3 公比為2的等比數(shù)列bn=4*...
    我來回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版