精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 設(shè)L是橢圓周2x^2+y^2=1,n是L的外法向量,f(x,y)=(x-2)^2+y^2,求∮∂f/∂n ds

    設(shè)L是橢圓周2x^2+y^2=1,n是L的外法向量,f(x,y)=(x-2)^2+y^2,求∮∂f/∂n ds
    數(shù)學(xué)人氣:714 ℃時間:2020-09-12 10:45:17
    優(yōu)質(zhì)解答
    首先證明一個公式:∮(∂f/∂n)ds=∫∫Δfdxdy.由于∂f/∂n=∂f/∂x*cos(n,x)+∂f/∂y*cos(n,y)
    ,所以(∂f/∂n)ds=∂f/∂x*ds*cos(n,x)+∂f/∂y*ds*cos(n,y)=∂f/∂x*dy-∂f/∂y*dx,應(yīng)用格林公式,有∮(∂f/∂n)ds=∫∫(∂^2f/∂x^2*+∂^2f/∂y^2)dxdy=∫∫Δfdxdy.本題中Δf=2+2=4,故利用上面的公式,所求積分=∫∫4dxdy=4∫∫dxdy,而∫∫dxdy等于積分區(qū)域的面積,本題中橢圓面積=πab=(√2/2)π,因此積分=(2√2)π
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版