有一片牧場,草每天都在勻速地生長(即草每天增長的量相等),如果放牧24頭牛,則6天吃完牧草;如果放牧21頭牛,則8天吃完牧草.設(shè)每頭牛每天吃草的量是相等的,問:
(1)如果放牧16頭牛,幾天可以吃完牧草?
(2)要使牧草永遠(yuǎn)吃不完,至多放牧幾頭牛?
設(shè)牧場原有草量為a,每天生長的草量為b,每頭牛每天吃草量為c,16頭牛x天吃完草.
(1)由題意得:
| a+6b=24×6c ① | a+8b=21×8c ② | a+bx=16cx ③ |
| |
由②-①得 b=12c ④
由③-②得 (x-8)b=(16x-168)c ⑤
將④代入⑤得 (x-8)×12c=(16x-168)c,解得 x=18
(2)設(shè)至多放牧y頭牛,牧草才永遠(yuǎn)吃不完,則有cy≤b,即每天吃的草不能多于生長的草,y≤
=12.
答:(1)如果放牧16頭牛,18天可以吃完牧草;(2)要使牧草永遠(yuǎn)吃不完,至多放牧12頭牛.