∴直線3x-4y+12=0交x軸于A(-4,0),交y軸于B(0,3)
∵所求的圓以AB為直徑
∴該圓以AB中點C為圓心,半徑長為
1 |
2 |
∵AB中點C坐標為(
?4+0 |
2 |
0+3 |
2 |
3 |
2 |
1 |
2 |
1 |
2 |
(0+4)2+(3?0)2 |
5 |
2 |
∴圓C的方程為(x+2)2+(y-
3 |
2 |
5 |
2 |
3 |
2 |
25 |
4 |
故答案為:(x+2)2+(y-
3 |
2 |
25 |
4 |
1 |
2 |
?4+0 |
2 |
0+3 |
2 |
3 |
2 |
1 |
2 |
1 |
2 |
(0+4)2+(3?0)2 |
5 |
2 |
3 |
2 |
5 |
2 |
3 |
2 |
25 |
4 |
3 |
2 |
25 |
4 |