f(x)=(3/4)x^2-3x+4
對(duì)稱軸x=2
a>=2時(shí)
f(x)增
f(a)=a
f(b)=b
aa=4/3
b=4
矛盾
a<2,b>=2
(a+b)/2>2時(shí)
min=f(2)=1=a
f(b)=b
b=4/3(舍)或b=4
a<2,b>=2
(a+b)/2<2時(shí)
min=f(2)=1=a
max=f(a)=b=f(1)=7/4<2(舍)
a<2 b<2
f(b)=a
f(a)=b
(3/4)a^2-3a+4=b
(3/4)b^2-3b+4=a
相減
(3/4)[(a+b)(a-b)]-3(a-b)=b-a
3[(a+b)(a-b)]+8(b-a)=0
(a-b)[3a+3b-8]=0
a3a+3b=8
(9/4)a^2-9a+12=3b=8-3a
無實(shí)根
綜上
a=1
b=4
2.設(shè)f(x)=x+a^2/x(x>0,a>0)
1)證明f(x)在(0,a]上是減函數(shù),在x>=a上是增函數(shù)
f(x)'=1-aa/x
在(0,a]上
f(x)'<0
是減函數(shù)
在x>a上
f(x)'>0
是增函數(shù)
2)當(dāng)x∈[1/3,3]時(shí),求f(x)的取值范圍
0f(1/3)<=f(x)<=f(3)
1/3f(a)=
f(3)<=f(x)<=f(1/3)