于是x2+2ax+b2=0?x2+2ax+a2-c2=0?[x+(a+c)][x+(a-c)]=0,
該方程有兩根x1=-(a+c),x2=-(a-c).…(5分)
同樣,x2+2cx-b2=0?[x+(c+a)][x+(c-a)]=0,
該方程亦有兩根x3=-(c+a),x4=-(c-a).…(7分)
顯然x1=x3,兩方程有公共根.…(8分)
必要性:設(shè)方程x2+2ax+b2=0與x2+2cx-b2=0的公共根為m,…(9分)
則
|
(1)+(2)得m=-(a+c).(m=0舍去).…(13分)
將m=-(a+c)代入(1)式,得[-(a+c)]2+2a?[-(a+c)]+b2=0,
整理得a2=b2+c2.…(15分)
所以A=90°.
故結(jié)論成立.…(16分)