解析:∵函數(shù)y=sinwx在[-1,2]上是增函數(shù)
y=sinwx為奇函數(shù),關(guān)于原點中心對稱
∴T/2=2-(-2)=4==>T=8
要保證函數(shù)y=sinwx在[-1,2]上是增函數(shù),只要T>=8
w∴T/2=2-(-2)=4==>T=8能解釋下么因為,y=sinwx為奇函數(shù),關(guān)于原點中心對稱,又正弦函數(shù)單調(diào)增區(qū)間-π/(2w)<=x<=π/(2w),即區(qū)間端點值關(guān)于原點對稱,要保證在區(qū)間[-1,2]上單調(diào)增,函數(shù)y單調(diào)增區(qū)間必須大于等于[-2,2]所以,T/2>=2-(-2)=4==>T>=8==>實數(shù)w的取值范圍為0