∴a>0,△=16-4ac=0,
∴a>0,c>0,ac=4,
∴
a |
c2+4 |
c |
a2+4 |
=
a |
c2+ac |
c |
a2+ac |
=
a |
c(a+c) |
c |
a(a+c) |
=
1 |
c |
1 |
a+c |
1 |
a |
1 |
a+c |
=
1 |
a |
1 |
c |
2 |
a+c |
≥2
|
2 | ||
2
|
1 |
2 |
當(dāng)且僅當(dāng)a=c=2時(shí)取等號(hào).
故答案為
1 |
2 |
a |
c2+4 |
c |
a2+4 |
a |
c2+4 |
c |
a2+4 |
a |
c2+ac |
c |
a2+ac |
a |
c(a+c) |
c |
a(a+c) |
1 |
c |
1 |
a+c |
1 |
a |
1 |
a+c |
1 |
a |
1 |
c |
2 |
a+c |
|
2 | ||
2
|
1 |
2 |
1 |
2 |