由拋物線y=-x2+2x+3與x軸交于A、B兩點(diǎn),
則對(duì)稱軸為:x=1.
當(dāng)-x2+2x+3=0,
解得:x=3或x=-1.
∴點(diǎn)A(-1,0),點(diǎn)B(3,0),
拋物線y=-x2+2x+3當(dāng)x=0時(shí),y=3,
∴點(diǎn)C(0,3).
設(shè)直線BC為:y=kx+b,
代入點(diǎn)B,C得:k=-1,b=3,即y=-x+3,
代入對(duì)稱軸x=1,則y=2,
∴點(diǎn)D(1,2).
(2)①由題意如圖,
![](http://hiphotos.baidu.com/zhidao/pic/item/d31b0ef41bd5ad6e04f8ab5b82cb39dbb6fd3c7a.jpg)
∵A,B關(guān)于l對(duì)稱,
∴AD=BD,BE=2,AB=4,DE=2,
則BD=AD=
DE2+BE2 |
2 |
∴BD2+AD2=16,
∵AB2=16,
∴BD2+AD2=AB2,
由勾股定理的逆定理知,∠ADB=90°,即AD⊥BD.
故當(dāng)AD+CD最小時(shí),直線BD與⊙A相切.
②由①所得點(diǎn)D的另一個(gè)坐標(biāo)(1,-2).