1 |
3 |
1 |
2 |
設(shè)x2+ax+2b=(x-x1)(x-x2),(x1<x2)
則x1+x2=-a,x1x2=2b,
因?yàn)楹瘮?shù)f(x)當(dāng)x∈(0,1)時(shí)取得極大值,x∈(1,2)時(shí)取得極小值
∴0<x1<1,1<x2<2,
∴1<-a<3,0<2b<2,-3<a<-1,0<b<1.∴-2<b-2<-1,-4<a-1<-2,
∴
1 |
4 |
b?2 |
a?1 |
故選A.
1 |
3 |
1 |
2 |
b?2 |
a?1 |
1 |
4 |
1 |
2 |
1 |
2 |
1 |
4 |
1 |
4 |
1 |
2 |
1 |
3 |
1 |
2 |
1 |
4 |
b?2 |
a?1 |