![](http://hiphotos.baidu.com/zhidao/pic/item/d009b3de9c82d158fb58024d830a19d8bd3e4277.jpg)
(1)∠AEC=∠A+∠C.
證明:過點E作EF∥AB,
∴∠1=∠A;
又已知AB∥CD,
∴EF∥CD(平行公理),
∴∠2=∠C;
又∵∠AEC=∠1+∠2,
∴∠AEC=∠A+∠C.
(2)不成立,結(jié)論應(yīng)是∠A=∠AEC+∠C或∠C=∠AEC+∠A.
![](http://hiphotos.baidu.com/zhidao/pic/item/7a899e510fb30f243784b6ffcb95d143ad4b032b.jpg)
證明:如果E在CD下方,過E作EM∥AB∥CD,
那么可得出∠A=∠AEM,∠C=∠MEC,
∵∠AEM=∠AEC+∠MEC,
∴∠A=∠AEC+∠C,
如果E在AB上方,證法同上,可得出的結(jié)論是∠C=∠AEC+∠A.
當點E在點A和點C左側(cè)時∠A+∠AEC+∠C=360°.