1+y |
1-y |
又2x>0,即
1+y |
1-y |
解可得-1<y<1
函數(shù)f(x)的值域?yàn)椋?1,1)
(2)函數(shù)f(x)在x∈R上為單調(diào)增函數(shù)
證明:f(x)=
2x-1 |
2x+1 |
2 |
2x+1 |
在定義域中任取兩個(gè)實(shí)數(shù)x1,x2,且x1<x2
f(x1)-f(x2)=
2(2x1-2x2) |
(2x1+1)(2x2+1) |
x1<x2
∴2x1<2x2
從而f(x1)-f(x2)<0
所以函數(shù)f(x)在x∈R上為單調(diào)增函數(shù).