(2)an-2=-4*2^(n-1)=-2^(n+1),
∴an=2-2^(n+1),
an=b
∴bn-b
b
……
b2-b1=2-2^2,
b1=3=2+1,
累加得bn=2n+1-(2^2+2^3+……+2^n)
=2n+1-[2^(n+1)-4]
=2n+5-2^(n+1).
(3)cn=nbn-2n^2=5n-n*2^(n+1),
w=2^2+2*2^3+……+n*2^(n+1),
2w= 2^3+……+(n-1)*2^(n+1)+n*2^(n+2),
相減得w=n*2^(n+2)-[2^2+2^3+……+2^(n+1)]
=n*2^(n+2)-[2^(n+2)-4]
=(n-1)*2^(n+2)+4,
∴Tn=5n(n+1)/2-[(n-1)*2^(n+2)+4].