所以an+2=an+2,所以a1,a3,a5,…,a2n-1,…是首項(xiàng)為a1=1,公差為2的等差數(shù)列,因此a2n-1=2n-1.
當(dāng)n為偶數(shù)時(shí),cosnπ=1,所以an+2=3an,所以a2,a4,a6,…,a2n,…是首項(xiàng)為a2=2,公比為3的等比數(shù)列,因此a2n=2×3n?1.
綜上an=
|
(2)由(1)得S2n=(a1+a3+…+a2n?1)+(a2+a4+…+a2n)=3n+n2?1,
S2n?1=S2n?a2n=3n?1+n2?1,
所以Sn=
|