精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 先化解,再求值:【1/(x2+3x+2)+1/(x2+5x+6)+1/(x2+7x+12)】/1/(x2+9x+20),其中x=√2

    先化解,再求值:【1/(x2+3x+2)+1/(x2+5x+6)+1/(x2+7x+12)】/1/(x2+9x+20),其中x=√2
    數(shù)學人氣:570 ℃時間:2020-03-27 04:58:13
    優(yōu)質解答
    原式=[1/(x+1)(x+2)+1/(x+2)(x+3)+1/(x+3)(x+4)] ×(x+4)(x+5)
    =[1/(x+1)-1/(x+2) +1/(x+2)-1/(x+3) +1/(x+3)-1/(x+4)]×(x+4)(x+5)
    = [1/(x+1)-1/(x+4)]×(x+4)(x+5)
    =3/(x+1)(x+4)×(x+4)(x+5)
    =3(x+5)/(x+1)
    當x=√2時
    =3(√2+5)/(√2+1)
    =3(√2+5)(√2-1)
    =3(2-√2+5√2-5)
    =12√2 -9
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版