精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知數(shù)列Sn=2An+(-1)^n n大于一 試證明對于任意m大于4有 1/A4 +1/A5 +1/A6 +.+1/Am 小于7/8

    已知數(shù)列Sn=2An+(-1)^n n大于一 試證明對于任意m大于4有 1/A4 +1/A5 +1/A6 +.+1/Am 小于7/8
    我算出An=[2^(n-1)-2(-1)^n]/3
    其他人氣:728 ℃時間:2020-03-29 22:01:36
    優(yōu)質(zhì)解答
    An=[2^(n-1)-2(-1)^n]/3 =(2/3)[2^(n-2)+(-1)^(n-1)].
    A4=2.
    若m為偶數(shù),則
    1/A4 +1/A5 +1/A6 +...+1/Am
    =1/A4 +(1/A5+1/A6)+...+[1/A(m-1)+1/Am]
    其中1/A(m-1)+1/Am
    =(3/2){1/[2^(m-3)+1]+1/[2^(m-2)-1]}
    =(3/2){[2^(m-3)+1+2^(m-2)-1]/[2^(m-3)+1][2^(m-2)-1]}
    =(3/2){[2^(m-3)+2^(m-2)]/[2^(2m-5)-2^(m-3)+2^(m-2)-1]
    <(3/2){[2^(m-3)+2^(m-2)]/[2^(2m-5)][∵-2^(m-3)+2^(m-2)-1>0]
    =(3/2)[1/2^(m-3)+1/2^(m-2)]
    ∴1/A4 +1/A5 +1/A6 +...+1/Am
    =1/A4 +(1/A5+1/A6)+...+(1/A(m-1)+1/Am)
    <(1/2)+(3/2)[1/2^3+1/2^4+1/2^5+...+1/2^(m-2)]
    =(1/2)+(3/2)(1/4)[1-1/2^(m-4)]
    <(1/2)+(3/8)
    =7/8.
    當(dāng)m是奇數(shù)時,m+1是偶數(shù),所以
    1/A4 +1/A5 +1/A6 +...+1/Am
    <1/A4 +1/A5 +1/A6 +...+1/Am+1/A(m+1)
    <7/8.
    綜上,命題得證.
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版