證明:∵CD=CE,∴∠CDE=∠E=∠ACB的一半
∵D為AC中點,根據(jù)等腰三角形三線合一定理可知∠CBD=∠ABC的一半
∵AB=AC,∴∠DBC=∠E,∴DB=DE
∵F是BE的中點,根據(jù)根據(jù)等腰三角形三線合一定理可得DF⊥BE
如圖,等邊三角形ABC中,D為AC中點,CE為BC的延長線,且CE=CD,取BE中點F,求證“DF垂直BE
如圖,等邊三角形ABC中,D為AC中點,CE為BC的延長線,且CE=CD,取BE中點F,求證“DF垂直BE
數(shù)學人氣:918 ℃時間:2019-08-19 06:10:53
優(yōu)質(zhì)解答
我來回答
類似推薦
- 如圖,等邊三角形ABC中,D為AC的中點,CE為BC的延長線,且CE=CD,取BE中點F,求證:DF垂直BE.
- 如圖,D是△ABC的BC邊上的中點,DE⊥AC,DF⊥AB,垂足分別為E、F,且BF=CE.求證△ABC是等腰三角形.
- 如圖.在已知三角形ABC中,角ACB=90°,D、E、F分別是AC、AB、BC的中點,求證:CE=DF
- 如圖,D是三角形ABC的BC邊上的中點,DE垂直于AC,DF垂直于AB,垂足分別為點E,F,若BF=CE,則三角形ABC為等腰
- 如圖,在三角形ABC中,BD,CE是高,G為BC的中點,FG垂直DE,F為垂足.求證EF=DF
- 求解一道英語語法題
- class seven is having an English class now.改錯
- 我最好的朋友(英語作文)
- 人名迷:1.油煎豆腐(打唐朝一詩人名)
- 口算43+5 先算什么 再算什么
- 1.設f(x)=asin(πx+A)+bcos(πx+B),其中a,b,A,B為非零常數(shù),若f(2009)=-1,則f(2010)= 2.函數(shù)y=2sin(π/6-2x) x屬于【0,π】的單調(diào)遞增區(qū)間是.
- 1、She (usually) helps me with the English. 2、John (sometimes) watches TV. 對()中的部分提問,
猜你喜歡
- 1船速為4m/s,水速為5m/s,則該船能否垂直過河?
- 2小學六年級上學期語文補充習題第20課怎么寫
- 3管線長100米直徑20厘米油密度是0.830算里面多少油
- 4that從句中能不能用主將從現(xiàn).look,see,watch的區(qū)別
- 5一個數(shù)擴大100倍后得到20,這個數(shù)是();把0.5縮小到它的十分之一是()
- 6如圖,已知直線AB和CD相交于點O,∠COE是直角,OF平分∠AOE.寫出∠AOC與∠BOD的大小關系
- 7什么是畫面的張力
- 8一道數(shù)學題火速!要過程,最好講解!
- 9如何用結晶法分離乙醇和水?
- 10用不等式表示"a"與4的差是非負數(shù)
- 11A種飲料每瓶是5分之8升,B種飲料每瓶5分之6升,A種飲料比B種飲料多( )升,多( )百分之幾.
- 12用容量瓶成液體并用玻璃棒引流時,為什么玻璃棒要放在刻度線以下