精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知an=n^2,抽去數(shù)列的第一項第三項...第(3n-2)項,設(shè)此時的數(shù)列為dn,求dn的前n項和sn.

    已知an=n^2,抽去數(shù)列的第一項第三項...第(3n-2)項,設(shè)此時的數(shù)列為dn,求dn的前n項和sn.
    數(shù)學(xué)人氣:461 ℃時間:2020-05-30 22:06:07
    優(yōu)質(zhì)解答
    a(n) = n^2,
    a(3n-2) = (3n-2)^2

    d(2n-1) = a(3n-1)= (3n-1)^2 = 9n^2 - 6n + 1
    d(2n) = a(3n) = (3n)^2 = 9n^2,
    d(2n-1) + d(2n) = 18n^2 - 6n + 1,
    s(2n) = [d(1)+d(2)] + [d(3)+d(4)] + ... + [d(2n-1)+d(2n)]
    = 18n(n+1)(2n+1)/6 - 6n(n+1)/2 + n
    = 3n(n+1)(2n+1) - 3n(n+1) + n
    = 3n(n+1)*2n + n
    = 6(n+1)n^2 + n
    = n(6n^2+6n+1)
    s(2n-1) = s(2n) - d(2n) = 6(n+1)n^2 + n - 9n^2 = 6n^2 + 6n^3 + n - 9n^2
    = 6n^3 - 3n^2 + n
    =n(6n^2 - 3n+1)
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版