精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知x,y,z∈R^+,x+y+z=xyz,且去1/(x+y)+1/(y+z)+1/(z+x)≤k恒成立,則k的取值范圍是?

    已知x,y,z∈R^+,x+y+z=xyz,且去1/(x+y)+1/(y+z)+1/(z+x)≤k恒成立,則k的取值范圍是?
    數(shù)學(xué)人氣:845 ℃時(shí)間:2020-07-17 08:33:55
    優(yōu)質(zhì)解答
    只須求出1/(x+y)+1/(y+z)+1/(z+x)的最大值即可知道k的范圍.
    ∵x+y+z=xyz
    ∴1/(xy)+1/(yz)+1/(zx)=1
    由柯西不等式知:
    [1/(x+y)+1/(y+z)+1/(z+x)]^2
    ≤(1^2+1^2+1^2)[1/(x+y)^2+1/(y+z)^2+1/(z+x)^2]
    而且(x+y)^2=x^2+y^2+2xy≥2xy+2xy=4xy
    ∴1/(x+y)^2≤1/(4xy)
    同理:1/(y+z)^2≤1/(4yz),1/(z+x)^2≤1/(4zx)
    ∴1/(x+y)^2+1/(y+z)^2+1/(z+x)^2≤[1/(xy)+1/(yz)+1/(zx)]/4=1/4
    ∴[1/(x+y)+1/(y+z)+1/(z+x)]^2
    ≤(1^2+1^2+1^2)[1/(x+y)^2+1/(y+z)^2+1/(z+x)^2]
    ≤3/4
    ∴1/(x+y)+1/(y+z)+1/(z+x)≤√3/2
    以上不等式等號成立的條件是x=y=z=√3
    即1/(x+y)+1/(y+z)+1/(z+x)最大值為√3/2
    ∴當(dāng)k≥√3/2時(shí),1/(x+y)+1/(y+z)+1/(z+x)≤k恒成立
    k∈(√3/2 ,+∞)
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版