p |
x2 |
2 |
x |
設(shè)直線,并設(shè)l與g(x)=x2相切于點M(x0,y0)
∵g'(x)=2x,∴2x0=2p-2,解得
∴x0=p?1,y0=(p?1)2,
代入直線l方程解得p=1或p=3.
方法二:將直線方程l代入y=x2得2(p-1)(x-1)=0,
∴△=4(p-1)2-8(p-1)=0,
解得p=1或p=3.
(Ⅱ)∵f′(x)=p+
p |
x2 |
2 |
x |
px2?2x+p |
x2 |
①要使f(x)為單調(diào)增函數(shù),f'(x)≥0在(0,+∞)恒成立,
即px2-2x+p≥0在(0,+∞)恒成立,即p≥
2x |
x2+1 |
2 | ||
x+
|
又
2 | ||
x+
|
②要使f(x)為單調(diào)減函數(shù),須f'(x)<0在(0,+∞)恒成立,
即在(0,+∞)恒成立,即p≤
2x |
x2+1 |
2x |
x2+1 |
綜上,若f(x)在(0,+∞)為單調(diào)函數(shù),則p的取值范圍為p≥1或p≤0.