∴c=-3,
將點(diǎn)A(3,0),B(2,-3)代入y=ax2+bx+c
得
|
解得:a=1,b=-2.
∴y=x2-2x-3,
配方得:y=(x-1)2-4,
所以對(duì)稱(chēng)軸直線為:x=1;
(2)①由題意可知:BP=OQ=0.1t,
∵點(diǎn)B,點(diǎn)C的縱坐標(biāo)相等,
∴BC∥OA,
過(guò)點(diǎn)B,點(diǎn)P作BD⊥OA,PE⊥OA,垂足分別為D,E,
要使四邊形ABPQ為等腰梯形,只需PQ=AB,
∵BD⊥OA,PE⊥OA,垂足分別為D,E,
∴△ABD和△QPE為直角三角形,
當(dāng)PQ=AB時(shí),又∵BD=PE,
∴Rt△ABD≌Rt△QPE(HL),
∴QE=AD=1.
∵ED=BP=0.1t,DO=BC=2,
∴EO=2-0.1t,
又∵QE=OE-OQ=(2-0.1t)-0.1t=2-0.2t,
∴2-0.2t=1,
解得t=5.
即t=5秒時(shí),四邊形ABPQ為等腰梯形.
②設(shè)對(duì)稱(chēng)軸與BC,x軸的交點(diǎn)分別為F,G.
∵對(duì)稱(chēng)軸x=1是線段BC的垂直平分線,
∴BF=CF=OG=1.
又∵BP=OQ,
∴PF=QG.
又∵∠PMF=∠QMG,∠MFP=∠MGQ=90°,
∴△MFP≌△MGQ(AAS),
∴MF=MG,
∴點(diǎn)M為FG的中點(diǎn),
∴S=S四邊形ABPQ-S△BPN=S四邊形ABFG-S△BPN.
由S四邊形ABFG=
1 |
2 |
9 |
2 |
S△BPN=
1 |
2 |
1 |
2 |
3 |
40 |
∴S=
9 |
2 |
3 |
40 |
又∵BC=2,OA=3,
∴點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí)停止運(yùn)動(dòng),需要20秒.
∴0<t≤20.
∴當(dāng)t=20秒時(shí),面積S有最小值3.