設:f(n)=[1/(n+1)]+[1/(n+2)]+[1/(n+3)]+…+[1/(3n+1)]
則:f(n+1)=[1/(n+2)]+[1/(n+3)]+[1/(n+4)]+…+[1/(3n+2)]+[1/(3n+3)]+[1/(3n+4)]
兩式相減,得:
f(n+1)-f(n)=[1/(3n+2)]+[1/(3n+3)]+[1/(3n+4)]-[1/(n+1)]
=[1/(3n+2)]-[1/(3n+3)]+[1/(3n+4)]-[1/(3n+3)]
=1/[(3n+2)(3n+3)]-1/[(3n+3)(3n+4)]>0
即:f(n+1)>f(n)
從而,f(n)是遞增的,即f(n)的最小值是f(1)
則:
a/24太給力了,你的回答完美解決了我的問題!不客氣。
若不等式n+1/1+n+2/1+n+3/1+…+3n+1/1>24/a對一切n成立,求正整數(shù)a最大值,證明結論
若不等式n+1/1+n+2/1+n+3/1+…+3n+1/1>24/a對一切n成立,求正整數(shù)a最大值,證明結論
數(shù)學人氣:268 ℃時間:2019-08-18 07:35:48
優(yōu)質解答
我來回答
類似推薦
- 若不等式1/(n+1) + 1/(n+2) +1/(n+3) +……+1/(3n+1)>a/24對一切正整數(shù)n都成立,求a的最大值,
- 若不等式1/(n+1)+1/(n+2)+1/(n+3)+.+1/(3n+1)>a/24 對一切正整數(shù) 都成立,求正整數(shù)a的最大值,并證明
- 求使不等式/3n/2n+1-3/2/
- 急!求正整數(shù)的最大值,使不等式(1/n+1)+(1/n+2)+...+(1/3n+1)>a-7,對一切正整數(shù)n都成立.
- +++求使不等式|3n/n+1 -3
- 已知實數(shù)x,y滿足2x+3y≤14,2x+y≤9,x≥0,y≥0,S=3x+ay,若S取得最大值時的最優(yōu)解有無窮多個,則實數(shù)a=?
- 請問這種成分還屬301不銹鋼嗎?(C-0.1003;Si-0.2467;Mn-2.2387;p-0.358;S-0.169;Cr-14.6342;Ni-6.0215)
- X=2*3*5*7*11*13*17*19*23*29*.N(N為質數(shù)),求證:X+1為質數(shù)
- 若√2007n是個非零整數(shù),則最小整數(shù)n是?
- Either I or he ( )soccer with Tom 四個選項 play are plays is
- .the music festival was great!Many famous people (attended) it.
- 如果(M)表示m的全部因數(shù)的和,如(4)=1+2+4=7,則(18)-(21)=()