如圖,四邊形ABCD是菱形,對角線AC、BD相交于點O,DH⊥AB于H,連接OH,求證:∠DHO=∠DCO.
如圖,四邊形ABCD是菱形,對角線AC、BD相交于點O,DH⊥AB于H,連接OH,求證:∠DHO=∠DCO.
![](http://c.hiphotos.baidu.com/zhidao/wh%3D600%2C800/sign=6b0cfe665066d0167e4c962ea71bf83f/9825bc315c6034a80c08c52ac9134954082376b6.jpg)
答案是這個,證明:∵四邊形ABCD是菱形,
∴OD=OB,∠COD=90°,
∵DH⊥AB,
∴OH=OB,
∴∠OHB=∠OBH,
又∵AB∥CD,
∴∠OBH=∠ODC,
在Rt△COD中,∠ODC+∠DCO=90°,
在Rt△GHB中,∠DHO+∠OHB=90°,
∴∠DHO=∠DCO.
我想知道∵DH⊥AB,∴OH=OB,是怎么證出來的,OH和OB為什么相等?又不是角平分線怎么就相等了?
![](http://c.hiphotos.baidu.com/zhidao/wh%3D600%2C800/sign=6b0cfe665066d0167e4c962ea71bf83f/9825bc315c6034a80c08c52ac9134954082376b6.jpg)
答案是這個,證明:∵四邊形ABCD是菱形,
∴OD=OB,∠COD=90°,
∵DH⊥AB,
∴OH=OB,
∴∠OHB=∠OBH,
又∵AB∥CD,
∴∠OBH=∠ODC,
在Rt△COD中,∠ODC+∠DCO=90°,
在Rt△GHB中,∠DHO+∠OHB=90°,
∴∠DHO=∠DCO.
我想知道∵DH⊥AB,∴OH=OB,是怎么證出來的,OH和OB為什么相等?又不是角平分線怎么就相等了?
數(shù)學(xué)人氣:539 ℃時間:2019-08-21 16:04:05
優(yōu)質(zhì)解答
中位線定理啊什么的 好多年了忘記了DHB是直角三角形 O是中點 所以就相等啊
我來回答
類似推薦
- 如圖,四邊形ABCD是菱形,對角線AC、BD相交于點O,DH⊥AB于H, 連接OH,求證:∠DHO=∠DCO.
- 如圖,四邊形ABCD是菱形,對角線AC、BD相交于點O,DH⊥AB于H, 連接OH,求證:∠DHO=∠DCO.
- 如圖,四邊形ABCD是菱形,對角線AC、BD相交于點O,DH⊥AB于H, 連接OH,求證:∠DHO=∠DCO.
- 如圖4,菱形ABCD的對角線AC、BD交于點O,且AC=16cm,BD=12cm,求菱形ABCD的高DH
- 如圖,已知棱形ABCD的對角線AC,BD交于點O,且AC=16厘米,BD=12厘米,求菱形ABCd的高DH
- father went to his doctor for __ about his heart trouble.
- 4×27.5÷2x=8 4分之3-5分之1x=20% 怎么解這兩個方程
- 怎么用鍵盤輸入根號,圓周率等數(shù)學(xué)符號呢?
- x(x+1)(x-1)=120
- 把一個分數(shù)的分子擴大到原來的5倍,分母縮小為原來的五分之一,這個分數(shù)的值就()
- 設(shè)A(-1,0)、B(1,0),直線L1、L2分別過A、B兩點,且L1、L2的斜率之積為-4,求L1與L2的交點的軌跡方程?
- 癟乒乓球放入熱水鼓起的原因時熱脹冷縮還是溫度變化導(dǎo)致壓強增大
猜你喜歡
- 1英語翻譯
- 2遞等式計算如下(有2題,)
- 3請看看
- 4英語翻譯
- 5一道關(guān)于勻變速直線運動的高一物理題
- 6描寫三峽山陡水窄的句子是什么?
- 7成語,( )以名(
- 8甲乙兩個修路隊合修一條路,甲先修了全長的4/5,少4千米,接著乙修的長度是甲的一半,就全部修完了,乙隊
- 9獵豹的平均速度約是31.4米/秒,羚羊的平均速度是23.4米/秒.如果現(xiàn)在一只羚羊在一只獵豹前39米處開始逃跑,那么這只獵豹經(jīng)過多長時間可以追上這只羚羊?(得數(shù)保留整數(shù))
- 1013和7的最大公因數(shù)是多少?
- 11心事沉重,吃不下飯用什么詞語表示
- 12據(jù)測算,每10平方米的樹林明年可以吸收空氣中的有害氣體40克,某市計劃營造一條35000平方米的林帶,造成一年可以吸收多少千克有害氣體?