精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知函數(shù)f(x)=ln(ax+1)+1?x1+x,x≥0,其中a>0.(Ⅰ)若f(x)在x=1處取得極值,求a的值;(Ⅱ)求f(x)的單調(diào)區(qū)間;(Ⅲ)若f(x)的最小值為1,求a的取值范圍.

    已知函數(shù)f(x)=ln(ax+1)+
    1?x
    1+x
    ,x≥0,其中a>0.
    (Ⅰ)若f(x)在x=1處取得極值,求a的值;
    (Ⅱ)求f(x)的單調(diào)區(qū)間;
    (Ⅲ)若f(x)的最小值為1,求a的取值范圍.
    數(shù)學(xué)人氣:632 ℃時(shí)間:2019-08-15 11:31:58
    優(yōu)質(zhì)解答
    (Ⅰ)f′(x)=
    a
    ax+1
    -
    2
    (1+x)2
    =
    ax2+a-2
    (ax+1)(1+x)2
    ,
    ∵f′(x)在x=1處取得極值,f′(1)=0
      即 a+a-2=0,解得  a=1
    (Ⅱ)f′(x)=
    ax2+a-2
    (ax+1)(1+x)2
    ,
    ∵x≥0,a>0,
    ∴ax+1>0
    ①當(dāng)a≥2時(shí),在區(qū)間(0,+∞)上f′(x)>0.
    ∴f(x)的單調(diào)增區(qū)間為(0,+∞)
    ②當(dāng)0<a<2時(shí),由f′(x)>0解得x>
    2-a
    a

    f′(x)<0解得x<
    2-a
    a

    ∴f(x)的單調(diào)減區(qū)間為(0,
    2-a
    a
    )
    ,單調(diào)增區(qū)間為(
    2-a
    a
    ,+∞)

    (Ⅲ)當(dāng)a≥2時(shí),由(II)知,f(x)的最小值為f(0)=1
    當(dāng)0<a<2時(shí),由(II)②知,f(x)在x=
    2-a
    a
    處取得最小值f(
    2-a
    a
    )<f(0)=1

    綜上可知,若f(x)的最小值為1,則a的取值范圍是[2,+∞)
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版