(2)∵直線y=kx+b與拋物線y=
1 |
4 |
∴可以得出:kx+b=
1 |
4 |
整理得:
1 |
4 |
![](http://hiphotos.baidu.com/zhidao/pic/item/f11f3a292df5e0fe3ee052b05f6034a85fdf7283.jpg)
∵a=
1 |
4 |
∴x1?x2=
c |
a |
(3)①△M1FN1是直角三角形(F點(diǎn)是直角頂點(diǎn)).
理由如下:設(shè)直線l與y軸的交點(diǎn)是F1,
FM12=FF12+M1F12=x12+4,
FN12=FF12+F1N12=x22+4,
M1N12=(x1-x2)2=x12+x22-2x1x2=x12+x22+8,
∴FM12+FN12=M1N12,
∴△M1FN1是以F點(diǎn)為直角頂點(diǎn)的直角三角形.
②y=-1和以MN為直徑的圓相切,
理由如下:
過M作MH⊥NN1于H,MN2=MH2+NH2=(x1-x2)2+(y1-y2)2,
=(x1-x2)2+[(kx1+1)-(kx2+1)]2,
=(x1-x2)2+k2(x1-x2)2,
=(k2+1)(x1-x2)2,
=(k2+1)[(x1+x2)2-4x1?x2]
=(k2+1)(16k2+16)
=16(k2+1)2,
∴MN=4(k2+1),
分別取MN和M1N1的中點(diǎn)P,P1,
PP1=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∴PP1=
1 |
2 |
即線段MN的中點(diǎn)到直線l的距離等于MN長度的一半.
∴以MN為直徑的圓與l相切.