因為sinα+sinβ+sinγ=1,所以3(sin2α+sin2β+sin2γ)≥1,得:sin2α+sin2β+sin2γ≥
1 |
3 |
(2)由恒等式tan2x=
1 |
cos2x |
1 |
a |
1 |
b |
1 |
c |
9 |
a+b+c |
得tan2α+tan2β+tan2 γ=
1 |
cos2α |
1 |
cos2β |
1 |
cos2γ |
9 |
cos2α+cos2β+cos2γ |
于是
9 |
cos2α+cos2β+cos2γ |
9 |
3-(sin2α+sin2β+sin2γ) |
9 | ||
3-
|
27 |
8 |
由此得tan2α+tan2β+tan2 γ≥
27 |
8 |
3 |
8 |