2 |
3 |
∴
|
|
∴f(x)=ax3+2ax2-4ax,
由圖象可知函數(shù)y=f(x)在(-∞,-2)上單調(diào)遞減,在(?2,
2 |
3 |
2 |
3 |
由f(x)極小值=f(-2)=a(-2)3+2a(-2)2-4a(-2)=-8,解得a=-1
∴f(x)=-x3-2x2+4x
(2)要使對(duì)x∈[-3,3]都有f(x)≥m2-14m恒成立,
只需f(x)min≥m2-14m即可.
由(1)可知函數(shù)y=f(x)在[-3,-2)上單調(diào)遞減,在(?2,
2 |
3 |
2 |
3 |
且f(-2)=-8,f(3)=-33-2×32+4×3=-33<-8
∴f(x)min=f(3)=-33(11分)-33≥m2-14m?3≤m≤11
故所求的實(shí)數(shù)m的取值范圍為{m|3≤m≤11}.