已知:?ABCD的對(duì)角線交于點(diǎn)O,點(diǎn)P是直線BD上任意一點(diǎn)(異于B、O、D三點(diǎn)),過(guò)P點(diǎn)作平
行于AC的直線,交直線AD于E,交直線AB于F.
(1)若點(diǎn)P在線段BD上(如圖所示),試說(shuō)明:AC=PE+PF;
(2)若點(diǎn)P在BD或DB的延長(zhǎng)線上,試探究AC、PE、PF滿足的等量關(guān)系式(只寫(xiě)出結(jié)論,不作證明).
證明:(1)延長(zhǎng)FP交DC于點(diǎn)G,
∵AB∥CD,AC∥FG,
∴四邊形AFGC是平行四邊形,
∴AC=FG(平行四邊形的對(duì)邊相等),
∵EG∥AC,
∴
=
=
(被平行線所截的線段對(duì)應(yīng)成比例);
又∵OA=OC,
∴PE=PG,
∴AC=FG=PF+PG=PE+PF;
(2)若點(diǎn)P在BD延長(zhǎng)線上,AC=PF-PE.如下圖所示
若點(diǎn)P在DB延長(zhǎng)線上,AC=PE-PF.如下圖所示.
.