∴方程ax2+(b-8)x-a-ab=0的兩個(gè)根為-3,2.
由韋達(dá)定理知
|
解得:a=-3,b=5,
∴f(x)=-3x2-3x+18.
(2)y=
f(x)?21 |
x+1 |
?3x2?3x?3 |
x+1 |
x(x+1)+1 |
x+1 |
1 |
x+1 |
1 |
x+1 |
∵x>-1,
∴x+1+
1 |
x+1 |
當(dāng)且僅當(dāng)x+1=
1 |
x+1 |
∴當(dāng)x=0時(shí),ymax=-3.
f(x)?21 |
x+1 |
|
f(x)?21 |
x+1 |
?3x2?3x?3 |
x+1 |
x(x+1)+1 |
x+1 |
1 |
x+1 |
1 |
x+1 |
1 |
x+1 |
1 |
x+1 |