精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 設(shè)一個(gè)球的表面積為S1,它的內(nèi)接正方體的表面積為S2,則s1/s2的值等于,為什么(2R)^2=3a平方呢?

    設(shè)一個(gè)球的表面積為S1,它的內(nèi)接正方體的表面積為S2,則s1/s2的值等于,為什么(2R)^2=3a平方呢?
    球的表面積公式=4πR^2
    內(nèi)接正方體對(duì)角線為2R
    也就是a^2+a^2+a^2=(2R)^2
    a^2=4R^2/3
    正方體表面積=6a^2=8R^2
    球內(nèi)接正方體的表面積與球的表面積之比為 2:π
    a^2+a^2+a^2=(2R)^2這條式子是怎么來(lái)的?
    數(shù)學(xué)人氣:269 ℃時(shí)間:2019-08-18 20:46:15
    優(yōu)質(zhì)解答
    正方體的頂點(diǎn)都在圓上,設(shè)邊長(zhǎng)為a,正方體的重心就是圓心,即正中間.則R=[(√3)a]/2
    S1=4πR^2,S2=6a^2,s1/s2=3π:8
    我來(lái)回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁(yè)提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版