(1)證明:連接AD
∵AB=AC,∠BAC=90°,D為BC的中點(diǎn),
∴AD⊥BC,BD=AD.
∴∠B=∠DAC=45°.
又BE=AF,
∴△BDE≌△ADF(SAS).
∴ED=FD,∠BDE=∠ADF.
∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°.
∴△DEF為等腰直角三角形.
(2)△DEF為等腰直角三角形.
證明:若E,F分別是AB,CA延長(zhǎng)線上的點(diǎn),如圖所示:
連接AD,
∵AB=AC,
∴△ABC等腰三角形,
∵∠BAC=90°,D為BC的中點(diǎn),
∴AD=BD,AD⊥BC(三線合一),
∴∠DAC=∠ABD=45°.
∴∠DAF=∠DBE=135°.
又AF=BE,
∴△DAF≌△DBE(SAS).
∴FD=ED,∠FDA=∠EDB.
∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.
∴△DEF仍為等腰直角三角形.
望采納,謝謝
為什么中間還要一個(gè)三角形啊,不要行么