精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知a大于0 且a不等于1,f(x)=1/(a^x+根號a)求值:f(0)+f(1),f(-1)+f(2)

    已知a大于0 且a不等于1,f(x)=1/(a^x+根號a)求值:f(0)+f(1),f(-1)+f(2)
    由1的結(jié)果歸納概括對所有實(shí)數(shù)x都成立的一個(gè)等式,并加以證明
    數(shù)學(xué)人氣:542 ℃時(shí)間:2020-04-10 11:17:54
    優(yōu)質(zhì)解答
    f(0) = 1/(a^0 + √a) = 1/(1 + √a) = (√a - 1)/[(√a + 1)(√a - 1)] = (√a - 1)/(a - 1)
    f(1) = 1/(a^1+ √a) = 1/(a + √a) = (a - √a)/[(√a + a)(a - √a)] = (a - √a)/(a² - a) = (a - √a)/a(a - 1)
    f(0) + f(1) = (√a - 1)/(a - 1) + (a - √a)/a(a - 1) = √a/a
    f(-1) = 1/[a^(-1) + √a] = a/(1 + a√a) = a(a√a - 1)/[(a√a + 1)(a√a - 1)] = a(a√a - 1)/(a³ - 1)
    f(2) = 1/(a² + √a) = (a² - √a)/[(a² + √a)(a² - √a)] = (a² - √a)/a(a³ - 1)
    f(-1) + f(2) = a(a√a - 1)/(a³ - 1) + (a² - √a)/a(a³ - 1) = √a/a
    對于任意的x、y,滿足x+y = 1,等式:
    f(x) + f(y) = √a/a = 1/√a.
    證明:∵ x + y = 1;
    ∴y = 1 - x
    f(x) = 1/(a^x + √a) = (a^x - √a)/a[a^(2x-1) - 1]
    f(y) = f(1-x) = 1/[a^(1-x) + √a]
    = a^x / a^x[a^(1-x) + √a]
    = a^x / (a + a^x√a)
    = a^x(a^x√a - a) / [(a + a^x√a)(a^x√a - a)]
    = a^x(a^x√a - a) / a²[a^(2x-1) - 1]
    f(x) + f(y) = (a^x - √a)/a[a^(2x-1) - 1] + a^x(a^x√a - a) / a²[a^(2x-1) - 1]
    = [a^(x+1) - a√a + a^2x√a - a^(x+1)]/a²[a^(2x-1) - 1]
    = a√a[a^(2x-1) - 1]/a²[a^(2x-1) - 1]
    = √a/a
    = 1/√a
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版