m2=1(m>0),
即m=1;
(2)當(dāng)a=1時,∠OPA=90°成立,即當(dāng)a>0且a≠1時,∠OPA=90°不成立.
①b=2a,y=kx+2a,
P在直線上,則a=k+2a,即a=-k(k<0)
則kx+2a=0,即x=-
2a |
k |
?2k |
k |
A(2,0)
-kx2=kx-2k?x2+x-2=0?(x+2)(x-1)=0,x=-2或x=1
M(-2,4a)
∠OPA=90°
即a2=1,a=1
k=-1,y=-x-2,y=x2
P(1,1)
故當(dāng)a=1時,∠OPA=90°成立,即當(dāng)a>0且a≠1時,∠OPA=90°不成立;
②當(dāng)b=4時,直線y=kx+b即為直線y=kx+4,
kx+4=0?x=-
4 |
k |
又∵直線y=kx+4過點(diǎn)P(1,a),
∴k+4=a?k=a-4,
(a-4)x+4=ax2
即ax2-(a-4)x-4=0
即(ax+4)(x-1)=0
∴S=
4 |
4?a |
16 |
a |
1 |
2 |
32 |
4a?a2 |
1 |
S |
1 |
8 |
1 |
32 |
1 |
32 |
1 |
8 |
∴當(dāng)a=2時,
1 |
S |
1 |
8 |