∵BB1⊥平面ABCD,
∴BB1⊥AB,BB1⊥BC.
∴EM∥BB1,F(xiàn)N∥BB1.∴EM∥FN.
又B1E=C1F,∴EM=FN.
故四邊形MNFE是平行四邊形.
∴EF∥MN.又MN在平面ABCD中,
∴EF∥平面ABCD.
證法二:過(guò)E作EG∥AB交BB1于點(diǎn)G,連接GF,則
B1E |
B1A |
B1G |
B1B |
∵B1E=C1F,B1A=C1B,∴
C1F |
C1B |
B1G |
B1B |
∴FG∥B1C1∥BC.
又∵EG∩FG=G,AB∩BC=B,
∴平面EFG∥平面ABCD.而EF在平面EFG中,
∴EF∥平面ABCD.